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Summary

Spatially evolving instabilities in a flat-plate

boundary layer are computed by direct numeri-

cal simulation (DNS) of tile incompressible Navier-

Stokes equations. In a truncated physical doinain,

a nonstaggered mesh is used for the grid. A

Chebyshev-collocation method is used normal to the
wall, fourth-order finite differences for the pressure

equation and fourth-order compact differences for the
momentmn equations are used in the streamwise di-

rection, and a Fourier series is used in the span-

wise direction. For time stepping, implicit Crank-

Nicolson and explicit Runge-Kutta schemes are used

for the time-splitting method. The influence-matrix

technique is used to solve the pressure equation. At
the outflow boundary, the troffer-domain technique

is used to prevent convective wave reflection or up-

stream propagation of information from the b(mnd-

ary. Of the techniques available to force transition,

the present investigation uses approxiinations from
linear stability theory (LST) and the newly devel-

oped parabotized stability equation (PSE) theory for

inflow forcing. Comparisons are made to (l) validate

the numerical techniques, (2) deternfine the effects

of grid resolution on the downstream evolving fow,

(3) determine the effects of physical domain trun-
cation on the disturbance, (4) determine the sensi-

tivity of the disturbances to changes in the inflow

forcing, (5) test the outflow boundary condition, and

(6) test. the accuracy of PSE theory. The answers to

the above objectives would serve as a guide for filture
DNS and PSE studies of more complex problems of

interest with an a priori knowledge of the preced-

ing numerical effects. As a note, the present study is
concerned with unbounded flow transition. Although

the related problem of bomlded flows may be solved

in a similar manner, the discussion (and references)

in the present paper are, for the most part, confined
to unbounded flows.

Results from the simulations are first compared

with those of LST with a parallel inean flow used.

The computed disturbance amplitudes and phases

are in very good agreement with those of LST (for
small inflow disturbance amplitudes). Sinmlations

are repeated with a nonparallel mean flow. The ex-

pect.ed increase in growth rate and wavelength shift

are observed when compared with the parallel mean

flow case. A comparison is also made between re-
suits from PSE theory and DNS. A measure of the

sensitivity of the inflow condition is demonstrated

with both LST and PSE theory used to approximate

inflows on "coarse" and "fine" grids. Very small dif-
ferences at the inflow are amplified downstream. Al-

though the DNS numerics are far removed from PSE

theory, the results agree relatively well. Finally, a

small-amplitude waste triad is forced at the inflow,
and sinmlation results are compared with those of

LST t.o verify tile accuracy of the three-dimensional

(3-D) aspect of the code with a known theory. Again,
very good agreenmnt is found between DNS and LST

results for the 3-D simulations, and this agreement

indicates the disturt)ance amplitudes are sufficiently
small that nonlinear interactions are negligible. The

good agreement between DNS and LST results
verifies that the 3-D aspect of the code is accurate.

1 Introduction

For the past century, numerous investigations

have been conducted in an att, empt to predict the
transition from laminar to turbulent flow in bound-

ary layers. Most of this effort slems from the in-

dependent early theoretical accomplishments of Orr

(reN. 1 and 2) and Sommerfl_ht (ref. 3) at the turn
of the 20th century. Their achievement, based on

linearized disturbance equations, is a successful ex-

ample of classical hydrodynamic stability theory and
is referred to as the Orr-Sommerfeld equation. It

was not until some 20 years later that Tollmien

(ref. 4) was able t.o solve the Orr-Somnlerfel(t equa-
tion, and this solution led to the calclflati(m of a

critical Reynolds number for the onset of instability.

On tile same sut)ject. Sehlichting (rcf. 5) compute(t

amt)lification rates of disturbances in the b(mn(t-

ary layer. Part of the first ext)erinmntal confir-
mation of the theory was given by Schubau(u" and

Skramstad (refs. 6 and 7), who used a vibrating rit)-

t)on to iml)ress a (listurt)anee into the |)oundary layer

and hot wir(,s (which were now availat)le) to take
measurenmnts. With these contributions (and oth-

ers) spamfing some 40 ),'ears. theory and experinmnts
now agreed on the initial growth of disturl)a.nces.

Today, we have various mathematical and compu-
tational tools available to solve the Orr-Sommerfeld

equation. From this equation, much is now taMer-

stood concerning t)omldary-htyer disturl)anees, more

commonly referred to as the Tollmien-Schlichting

(TS) waves.

Since its origination, stability theory has gained

wide acceptance and is now a well-estalflished tool

in the research and engineering conmmnity. Further-

more, it is from stability theory that the first rea-

sonably comprehensive method for predicting tran-
sition was derived, the eN-nmthod by Smith and

Gamberoni (ref. 8) and Van Ingen 1. However, the

1 Van Ingen, .1. L.: A Suggested Semi-Empirical *lethod

for the Calculation of the I_(nlndary-I_ayer Transition R_,gion.

Rep. no. VTH-74, University of Delft (The Netherlands), 1956.



nmthod is semiempirical and thus requires some fore-

knowledge of the flow undergoing transition. The

true physical problem involves disturbances that in-

teract in a nonlinear manner in later stages of transi-

tion, and these disturbances are embedded in a grow-
ing boundary layer. It is apparent that a method,

which accounts for nonparallel flow and nonlinear

interactions, is necessary to predict transition. At

present, such an all-encompassing method of transi-

tion prediction is beyond our grasp, but progress has
been made in recent years.

In tile last decade, much excitement has arisen

because of tile strides that have been made in the-

oretical developments for predicting stages of tran-

sition beyond tile linear growth stage. Stemming in
part from pioneering attempts at nonlinear theories

by Benney and Lin (ref. 9) and Craik (ref. 10), Orszag
and Patera (ref. 11) and Herbert (ref. 12) derived a

theory, based on Floqu& theory, which accounts for

an experimentally observed three-dimensional (3-D)
parametric instability. Although the governing equa-

tions are linearized and a local parallel flow assump-

tion is made, remarkable agreement is obtained be-
tween predictions from this new theory and experi-

mental results, in particular for tile peak-valley split-

ting mode identified by Klebanoff, Tidstrom, and

Sargent (ref. 13) and for the peak-valley alignment

mode observed by' Kachanov and Levchenko (ref. 14).
These are examples of two distinct and different
routes to transition that are discriminated based on
the initial disturbance levels. Since its introduc-

lion in the early' 1980's aim subsequent verification
throughout that decade, the theory for secondary in-

stabilities is generally accepted and is now widely

used by the research conmmnity as a tool to fur-

ther understand and predict, transition in boundary
lwers.

More recently, Herbert (ref. 15) and Bertolotti

(ref. 16) have devised it nonlinear, nonparallel com-
putational method based on the so-called "parabo-

lized stability equations" (PSE's). The full bene-

fits and linfitations of this new theory are yet to be

realized and are explored somewhat in this paper.
Prior to development of this theory, the only ap-

proach to solve the nonparallel, nonlinear boundary-

layer transition problem was by direct numerical

sinmlation (DNS), although researchers have had

some success with asymptotic methods to solve prob-

lems in the large Reynolds number linfit (Smith
(ref. 17) and Hall and Smith (ref. 18)). To date,

nlost studies using DNS have been limited to the

temporal formulation, in which a spatially periodic
computational domain trawfls with the disturbance

and the temporal evolution of the disturbance is

computed. This enabled simulations into the later

stages of transition (Zang and Hussaini (refs. 19
and 20) and Laurien and Kleiser (ref. 21)), and thus

provided a data base of qualitative information that,

however, lacks the physically realistic spatial repre-

sentation. Spatial DNS provides needed quantitative

information about transition. But with spatial DNS,

obstacles exist that have prevented fully carrying out
such a study. Among these are the realistic spec-

ification of inflow and outfow conditions and high
demands on computational resources. Even with to-

day's supercomputers, current resources are insuffi-

cient to fully simulate transition to turbulence in a

boundary layer in a spatial setting. However, Rai

and Moin (ref. 22) have demonstrated that the qual-

itative characteristics of the transition process can be
captured with todays computers.

Yet, progress in spatial DNS has been made by,

among others, Fasel, Rist, and Konzelmann (refs. 23
to 26) and Spalart (ref. 27) for boundary-layer flow

and Danabasoglu, Biringen, and Streett (ref. 28) for

channel flow. To date, results obtained from spatial
DNS have been compared qualitatively and, with

some success, quantitatively to results from linear

stability theory (LST), secondary instability theory,
and available experiments. For a more complete list

of accomplishments in transition prediction through

the use of DNS, refer to the recent review by Kleiser

and Zang (ref. 29).

The goal of the present research effort is to intro-

duce a spatial DNS approach that adequately handles

outflow problems that can arise, that properly cap-
tures the flow physics, and that establishes a para-

metric understanding of DNS. The accomplishment
of this goal would lead to potential benchmark solu-

tions for use with future theories. To accomplish this

goal, confidence in the numerical techniques must be

established. In this initial study, results from sim-

ulations of boundary-layer flow over a flat plate are

compared with those from LST and PSE theory.

Symbols

o

A,_,m inflow amplitudes of forced
disturbances

B

G

ei

LST matrix

coefficients for Runge-Kutta march-
ing, i= 1,2,3

matrix coefficients for LST,
i = 0, 1,2,3,4

transformed matrix coefficients for

LST, i = 0, 1, 2, 3, 4



D

F

G

H(u)

h_

h_

INF

NB

Xb

Na,,Ny,Nz

P

P

f)

Q

Q-1

R_

sj

8p

T

Tr

t

u,v,w

U

goG

collocation derivative operator

right-hand side of pressure equation

wave frequency

similarity dependent variable

right-hand side of eigenvector

decomposition technique

momentunl equation operator

time-step size

streainwise step size

modified influence matrix

momentmn equation operator

size of modified influence nlatrix

beginning of buffer domain

number of streamwise, wall-normal,

and spanwise grid points

inean-flow pressure component

disturbance pressure component

instantaneous pressure

eigenvector matrix of D2-operator

inverse of Q-matrix

Reynolds number based on stream-
wise coordinate

Reynolds numl)er based on local

displacement thickness

Reynolds nmnber based on inflow

displacement thickness

attenuation function for buffer-

domain technique

parameter for grid stretching
normal to wall

period of disturbance, T = 21r/co

Chebyshev polynonfial of order n

matrix trace

time

mean-flow streamwise, wall-nornlal,

and spanwise velocities

mean-flow velocity vector,

u = (u, v, w)

free-stream velocity

fi

lI

X T

x, y, z

YlII&X

F

OF

6"

_o

A

Ax, Az

/J

V

Subscripts:

max

//

T

OO

Superscripts:

1T/

(m)

disturbance streamwise, wall-

normal, and spanwise velocities

instantaneous velocities, fi = U + u

disturbance velocity vector,

u = w)

transpose of fourth-order penta-

diagonal inatrix

streamwise, wall-normal, aim

spanwise coordinate directions

physical far-field boundary distance

similarity variable, .q = yv_.r/:r

spectral domain variable, 9 E [-1, 1]

disturbance streamwise and span-
wise wave numbers

computational donmin

computational t)oundary

local displacelnent thickness

boundary-layer thickness at inflow

displacenlent thickness at inflow

eigenvalue matrix of D2-operator

disturbance strealnwise and span-

wise wavelengths

fluid kinematic viscosity

temporary variable, ( = dv/d[l

dependent variable for eigenvector

decomposition technique

mean-flow stream function

pressure-like wtriable

disturbance normal vorticity

disturbance frequency

divergence operator

inaximum

gradient normal to boundary

tangential component

free-stream conditions

Runge-Kutta time step

higher order derivatives

3
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O

T

(,,)

(,'it

Notation:

B-6

C-5

DNS

IlL

DP

LST

PSE

RK

['Ills

TS

fldl-timc-step quantities

with respect to inflow quantity

nlatrix transpose

fift h-order derivative

sixth-order derivative

with respect to displacement
thickness

Bertolotti PSE with six nlodes

Chang PSE with five modes

direct numerical simulation

I)NS with LST inflow

DNS with PSE inflow

linear stability theory

parabolized stability equation

Runge-Kutta

root-nlean-square

Tolhnien-Schlichting

A circunlttex over a symbol indicates it is a series
coetticient.

2 Governing Equations

Tht' inconlpressibh_ Navier-Stokes equations are

solved in the domain shown in figure 1. The stream-
wise direction is x. the direction normal to tire wall is

g. an(t th(, spanwise direction is z. Tire correspond-

ing instantaneous velocities arc fi = (h, i,, &) and the

t)r(,ssure is/). The niolnentum e(tuations are given by

fit + (fi- V)u = -vb + _v2fi
R;

and th(' continuity equation t)y

(1)

v. (, : 0 (2)

where sut)scripts on the dependent variables denote

tmrtial (teriwltives with respect to that subscripted
variat)le. The equations are nondimensionalize(l with

respect to the free-stream velocity Uoc, the kinematic

viscosity v, and sonle length scale at the inflow (say,
displacenlent thickness 5"). A Reynolds numt)er can

then be defined as R,*, = U,x:gJo/u. The instantaneous

velocities fi and pressure [_ m W be decomposed into

4

mean-flow components, U = (U, V, W) and P, and
fluctuating components, u = (u, 'v, w) and p:

fi(x,t)=U(x)+u(x,t) and /5(x,t) = P(x)+p(x,t)

(a)

where x = (x,y, z). Thus, the flow field is a com-

posite of mean and unsteady solution components,

which arc dcternfined and computed in tire following
manner.

2.1 Mean-Flow Component

The mean boundary-layer flow on a flat plate

may be described by the boundary-layer equations,

which are parabolic in the streamwise (x) direction.
Although a marching algorithnl may be used to

solve the equations for the mean flow (U, V), the
widely used Blasius similarity profile is employed

for the present study. A detailed description and

derivation of the mean-flow equations are provided
in appendix A.

2.2 Disturbance Component

The disturbance, or fluctuating, components of

equations (3) arc determined by solving the form
of the Navier-Stokes equations that results from our

substituting equations (3) into equations (1) and (2)
and sut)tracting out the mean-flow equations. These

unstea(ty, nonlinear disturbance equations are

1

ut + (u. V)u+ (U. V)u+ (u-V)U = -Vp+ _-, V2u
/t o

(4)
and the continuity equation is

V.u = 0 (5)

with boundary, conditions

u=0 at y=0 and u-+0 as y--+oc (6)

Outflow conditions are provided by parabolizing the

governing equations (4) over a small portion of the
downstream computational donmin. An illustration

of this is shown in figure 1. This procedure, known as

the t)uffer-domain technique, is described in a later
section.

Various analytical and numerical techniques are
now available to introduce a disturbance into the

boundary layer. For example, Fasel, Rist, and

Konzelmann (ref. 26) used time-periodic suction and

blowing, while Kral and Fasel (ref. 30) used heater

strips. An alternative form of disturbance forcing
is to introduce a prescribed time-periodic function



at the inflowor the free-streamboundary.Forthe
present,study,thedisturbanceforcingtakestile form
of eigenfunetionsimposedat the inflow boundary.
Sincetheemphasisof thisstudyis to verifythenu-
mericaltechniquesusedin the simulations,a con-
trolledinput is required,whichmaybeusedt)y the
DNS,LST,andPSEcodes.

Theinflowconditionuinisgivenbythemeanflow
andadisturbance-forcingfunction,or

uin=Uo+u ° at. x=0 (7)

where Uo is the inflow mean component. For the

present simulations, the disturbances take tile form
of a linear combination of individual functions:

rn=M n=N

u°= Z A,°,-," Re[a°L ,,m _ l
m= - M n= - N

(8)
where A°m represents the 2-D and 3-D disturbance
amplitudes, which for the fiat-plate boundary layer
are the amplitudes of Tollmien-Schlichting waves, .3

is a spanwise wave number, and ,a is tile real distur-

bance frequency. Time periodicity is assumed, with
^O

the period T = 2rr/w. Also, ur,,,_(y ) represents the
complex eigenflmctions either found from solving the

Orr-Sommerfeld and Squire equations or obtained
from a local approximation of the PSE, and the eigen-

functions are normalized by the maxinmm stream-

wise component. Descriptions of LST and PSE the-

ory and their numerical solution procedures are given

in appendixes B and C.

3 Numerical Methods

In this section, the following numerical techniques

required for the spatial sinmlation are discussed:

(1) discretization(s) in the streamwise, wall-normal,
and spanwise directions; (2) time-splitting procedure,

from which Poisson equations (2-D) or Helmholtz

equations (3-D) for the pressure are obtained; (3) the

eigenvector-decomposition method and the influence-
matrix method, which are employed to solve for

the pressure; (4) slip-velocity corrections, which are

introduced because the pressure equation is inviseid

to ensure that the tangential boundary conditions
on velocity remain intact; and (5) buffer-domain

technique, which is used to prevent wave reflections
at the outflow.

3.1 Spatial Discretization(s)

3.1.1 Discretization in the strearnwise di-

rection. In the streamwise direction (x-direction),

fourth-order central finite differences for the pres-

sure equation and corot)act differences for the mo-

mentum equations are used on the computational
domain of N.r discrete points. At boundary and near-

boundary nodes, fourth-order differences are used.

Although nonuniform grids have been implemented

and tested, the present study involves the use of
a uniform streamwise mesh. In this section, both

differencing inethods are discussed.

The objection to, or difficulty with, using higher
order schemes comes from the required use of a(tdi-

tional nodes to achieve the higher accuracy. For cen-

tral differencing, complications may arise at or near
a boundary, where insufficient nodes are available for

the differencing. While at)proximations by forward or

backward differences may be used, this inay reduee

the overall global order of the scheme or introduce
numerical instat)ilities.

For the standard central, forward, or back-

ward finite-difference approximations, the function of

interest is expanded in a Taylor series as

,, <!'
f,,+l = f,, + h:rf,', 4- _f_, +... _c m! J"

/-,,', _l*+l x
+ taVkr ) (9)

where frz is the function evahlated at node _; ha: is

the step size, uniform for simplicity; and (m) denotes
the higher order derivatives. Through expansion of

neighboring nodes in similar series about node 7_and

combination with equation (9), fourth-order central-

difference approximations nmy be found for the first

and second derivatives f_, and fff:

1
f[, = _(f,, .) -Nil, .1 + 8fi,+l f,,+2)-O(h:_.) (10)

1

f_'-- tz,_'_'°(-fi_ 2+16f,, 1-30fi,

+ 16fi,+l - f,,.+2) + O(h'il-) (11)

These approximations are used for the interior nodes

(i.e., those nodes for which the derivative stencil does

not extend beyond the boundary nodes). For bound-

ary and near-boundary nodes, fourth-order forward
and backward differences formed in a similar nmn-

ner are used. An explicit form of these forward-

and backward-difference relations is provided in

appendix D.

As the order of the approximation increases, the
required number of boundary and near-boundary

relations and the corresponding required number of



nodesper derivativestencilincrease.Therefore,to
achievehigheraccuracywithoutinvolvingtheuseof
additionalneighboringnodes,compactdifferencing
is introduced.

As originally suggestedby Kreissand Oliger
(ref.31) and later discussed for fluid dynamics prob-

lems by Hirsh (ref. 32), first and second derivatives
for a compact difference may be approxinmted by

.o)
1 + ghxD+D_

(12)

and

where

/ D+D_ )
fff= fn

\1 + _+D_
(13)

1 /
Dof. = 2-_x(f,+l - f.-1)

1

D+f,, l-_-x(f,,+I - f.)

1

D_ f. _(f. - fn-l)

(14)

Through multiplication of equations (12) and (13)

by the respective denonfinators, relations for the

(terivatives may be found:

1 I 2ft 1 r 1
_f:,-1 + _ ,, + _::,+1 = 2_-. (fn+l - fu-1) (15)

&nd

l_f:[_l + 4- = (f,+l - 2f, 4- fn-1)

(16)

These equations yieht tridiagonal systems, provided

appropriate boundary conditions are applied. The

approximations are fourth-order accurate and can
he solved efficiently by LU-decomposition with

appropriate backward and forward substitutions.

To make an accuracy comparison between the

compact-difference (eqs. (15) and (16)) and the

central-difference (eqs. (10) and (11)) scheme, Taylor
series expansions are employed. As Hirsh has shown,

the truncation errors for the compact differences are

E(fn). t _ 1801h4f(,, ) and 2401h4xf(Vi)
(17)

6

while similar error analyses for the central differences

yield

E(f:,)=-lh4.f (v) and E(fff)=- l_h4: (vi)90 "a:_
(18)

Although both schemes are fourth-order accurate,

the coinpact-differencc scheme should lead to more

accurate approximations as a result of having smaller
coefficients on the truncation error.

As yet, no mention has been made about the

boundary treatment for the compact-difference

scheme. At the boundaries, Hirsh (ref. 32) used
a one-sided fourth-order finite difference. Adam

(ref. 33) suggested additional boundary relations that

include near-boundary derivatives in the formula-

tion; yet, the equations retain the tridiagonal nature.
However, these relations are third-order accurate and

indicate no additional benefits, compared with direct

application of high-order one-sided differences. So,

for the present compact-difference scheme, one-sided
fourth-order finite-difl'erence boundary con(titions are

used. (See appendix D.)

Concerning the boundary condition treatment,

one might choose the second-order boundary condi-

tions since a mmmrical instability could be generated,
in particular, at the inflow with the use of higher

order approximations. For tlle present incompress-

ible spatial DNS, this problem was not encountered

with fourth-order boundary conditions; but, in at-
tempts to use filth-order boundary conditions or a

sixth-order compact-difference scheme, a mmmrical

instability appeared. Recently, this tmmerical insta-

bility for the sixth-order methods has been resolved

through an alternate boundary condition formula-
tion by Carpenter, Gottlieb, and Abarbanel (ref. 34).

This new fifth-order boundary treatment has en-

abled the use of a sixth-order compact-difference

scheme. Although numerical difficulties surround-
ing the sixth-order schemes have been resolved, the

remainder of this study involves the use of fourth-

order techniques since additional computational ex-

pense arises solely from the higher order method. In
a future study, a comparison of the fourth- and sixth-

order techniques may be undertaken to determine

if the accuracy gains with the sixth-order method

outweigh tile additional computational expense.

3.1.2 Discretization in the wall-normal di-

rection. Nornml to the wall (y-direction), Cheby-

shev series are used to approximate the disturbance
at Gauss-Lobatto colh)cation points. A Cimbyshev

series is used since, as Gottlieb and Orszag (ref. 35)

have shown, it provides good resolution in regions



of highgradients(e.g.,nearboundaries).Properties
of Chebyshevserieswith collocationgridsaregiven
in Gottlieb,Hussaini,andOrszag(ref. 36). A de-
taileddiscussionof spectralmethodpropertiesand
their applicationis providedby Canuto,Hussaini,
Quarteroni,andZang(ref.37).In thepresentpaper,
only abriefdescriptionof thenecessaryidentitiesis
provided.

The Gauss-Lobattopointsfor Chebyshevseries
are

Yi = cos(rci/Ny) (i = O, 1 ..., Ny) (19)

where Ny is the number of domain intervals (or high-
est degree of Chebyshev polynomials in the series)

and Ny = Ny + 1 denotes the number of collocation
points. Chebyshev polynomials are defined on the

interval [-1, 1] and are given by

Tn(_) = eos(n cos -1 _) (20)

where n is the order of the Chebyshev polynomial TTt.

A function f(_) may be represented by a Chebyshev

series at the Gauss-Lobatto points as

Ny

rl=0

(21)

where an represents the series coefficients. Deriva-
tives of the function at collocation points may be

represented by

df( i)
-  i,jaj (22)

where repeated indices indicate summation. Tile
derivative matrix D is given by

-- ci (-1) i+j (i C j;i,j=O, 1,...,Ny)
Di'j- ej Yi-Yj

- yj
Dj,j- 2(1-y2) (j= 1,2,-..,Ny-1)

_ 2N 2 + 1

Do,o - _6 - -D_y,N_
(23)

where ci and cj = 1 for i,j = 1,2,..., Ny - 1 and

co = c_y = 2. Higher order derivatives are simply

multiple powers of D, or

Dp = D-P (24)

where p is the derivative order.

Since the spectral interpolation function equa-

tion (20) is defined on [-1, 1] and the physical prob-
lem of interest has a senti-infinite domain [0, oc] or a

truncated domain [0, Ym_Lx], a transformation is eln-

ployed. Studies of spectral methods and mapping
tranformations in unbounded regions have been con-

ducted by Boyd (ref. 38) and Grosch and Orszag

(ref. 39). Here an algebraic mapping is used:

Y = ym_sp(1 + _) (25a)
2sp + Ymax(1 - Y)

or

(2Sp + Ymax)Y -- Ymax.Sp

Y = + y)
(25b)

where y E [0, ymax), Y e [-1, 11, yn,ax is the nor-

mal distance from the wall to the far-field boundary

in the truncated domain, and Sp controls the grid

stretching in the direction normal to the wall. As
a result of the stretching, the normal derivatives in

equations (23) and (24) are modified as follows:

D=mD and D 2 = rn2D 2+mm'D (26)

where the metric is defined as m = dVj/dy and

m I = dm/d_.

3.1.3 Discretization in the spanwise direc-
tion. To sinmlate the evolution of 3-D disturbances,

the governing equations must be discretizcd in the

spanwise direction (z-direction) in addition to the
streamwise and wall-normal directions. Some ratio-

nale in the choice of discrctization must be used since,

with this third dimension, the memory requirements

and cpu cost for a simulation can quickly exceed
current supcrcolnputer capabilities. From boundary-

layer experiments (refs. 13 and 14) it has been ob-
served that a distinct periodic structure is evident in

the spanwise direction. From this observation, span-

wise periodicity is assumed, and this periodicity al-
lows for Fourier series representations. With Fourier

series, spectral accuracy is obtained in the spanwise
direction and fast Fourier transforms (FFT's) or sine-

cosine transforms may be used, either of which allows

for the fast computing of derivatives.

In general, a function f(x, y, z, t) is represented by
a Fourier series expansion in the spanwise direction:

(N_/2)-1

f(x, y, z, t) = E f,_(x, V, t) ei''(2_/Az)z (27)

n=-Nz/2



where N: is the number of Fourier modes, Az = 2rr/3

is the spanwise wavehmgth, and fl is a specified

spanwise wave munber. To compute a derivative,

equation (27) is first transformed to Fourier space
|)y an FFT. The derivative is computed by

d ff ll _

d: - i&L,(*, _, t) (28)

where }4, = n/t and an inverse transform is used to

return the computed derivative to physical space.

Although the flfil Fourier representation (eq. (27))
is correct if the spanwise direction is periodic, more

('ost-effi('ient derivatives are computed by cosine and

sine ext)ansions for the special, yet widely used, case
of symmetry at)out z = 0 (e.g., wave triads and

some secondary instability calculations). For the
simulation problem, even flmctions (i.e., u, v, and p)
are expanded with cosine series and odd functions

(i.e.. w) are expanded with sine series:

:\'z

,. :. t) = _-_{ i,,,, ;,,,. p,, }(:,. v, t) ,_o.,.;(,,2_-/a:z)t.,}(.r.t',

(29a)
_-tIllt

w(:c,g,z,t)= Z &,,(.r,g.t)sin(n2w/Azz) (29[))
.'l =0

Equation (27) is used for a spanwise domain of a fifll

wavelength (Az), while the use of the symmetry as-

sumption with equations (29) permits computations

on half the domain, or a half-wavelength ()%/2). This

symmetry assuInption decreases tim computatioim]
(cpu and memory) requirements by apt)roximately a
factor of 2.

3.2 Time-Splitting Procedure

For the unsteady disturbance equations (4) to (6),
a time-splitting procedure is used with implicit
Crank-Nicolson differencing for normal diffusion

terms and an explicit third-order Runge-Kutta
method for all remaining terms. The Runge-Kutta

(RK) scheme, introduced by Williamson (ref. 40),
was implemented with the Crank-Nicolson Inethod

fin" Tayh)r-Couette flow calculations by Streett and

tIussaini (ref. 41). This time-splitting procedure COl>

sists of three intermediate RK stages, each stage of
the following form.

The pressure is omitted from the momentum

equation (4) for the fractional RK stage, and this

8

omission leads to

- C{"H"(u) + C½" D2(ut + u'")
n;

(30)

wtmre

Hm(u) = L"(u) + .:C]nH TM I(U)

and

1

L(u) = (U. V)u + (u. V)U + (u- V)u- _--_-V2.zu
"O

Here u f represents disturl)ance velocities at the in-

termediate RK stages, u m represents velocities at

previous RK stages (m = 1,2, or 3), u ° repre-

sents velocities at the previous time step, V':_2z =
02/Ox 2 + 02/Oz 2, and ht is the time-step size. Re-

call ttmt D is the derivative (eq. (26)). For a full RK

stage, the momentum equations with the pressure are

Llm+ l U m Clot

'2 _9, ,n*l lira) _Tpm+l
h7 , C["H'"(u) + _r*L'-tuR,, +

(31)

Sul)tracting equation (30) front equation (31) leaves

u '''+1 - u i _ C_'_D2(u m+l _ u t) _ Vp,,,+l
h_" n;

= -VJ'; l (32)

where _:J is an introduced I)ressure-like quantity. By

taking the divergence of equation (32) and imt)osing

zero divergence of the flow field at each RK stage
(m + 1), a pressure-like equation is obtained:

V2)m+ 1 1
@ (v. u*) (33)

which is sul)ject to homogeneous Neumann boundary
conditions. (See ref. 41.) The solution procedure is

as follows. The intermediate RK velocities u t are de-

termined by solving equation (30). The pressure-like

correction g0m+l is found by solving equation (33).
Then, the full RK stage velocities u m+l are obtained

from equation (32). Upon solution of the above sys-
tenl three consecutive times, fllll-tiine-step velocities
u n+l are determined. The RK coefficients and time

steps are given by

C 3 C 3 C3_J [32 1i7 -_ -

(34a)



and

h,2 = h, (34t,1

h 3 1_ht

where tile sum of tile three RK time stages equals

the full time step hr.

3.3 Eigenvector-Decomposition Method

To obtain the pressure-like correction p for the

2-D and 3-D boundary-layer problems, solutions of

Poisson equations for each time step are required.
For 3-D simulations with spanwise periodicity as-

sumed, the pressure correction is determined in
transform space, for which tile Fourier coefficients

are solved. In transform space, the Poisson equations

become Hehnholtz equations. In order to solve the

equations efficiently, a fast. elliptic solver is required.

For this purpose, tile tensor-product, or eigenvector

decomposition, approach is employed. Danabasoglu,

Biringen, and Streett (ref. 28) used tile eigenvector
decomposition method for tile 2-D channel problem.

The present solver description is for the 3-I) sinmla-

tion problem.

Tile Hehnholtz equations in transform space are

given by
2 . g, (35)

where .[_ represents tile spanwisc derivative coeffi-

cients, or wave nunlbers, of equation (28). Tile term

ib" represents tile transform coefficients of F, where

F is the right-hand side of equation (33), mid ()_, gives
the transform coefficients of tile desired solution, _:;.

With respect to matrix operations, (y, :r) ordering
is used below. Discretized in y and x, the Helmholtz

equations becoine

h2_),_ + _.,X T -,[;¢2_.5,, = /_,, (36)

where D2 is tile Chebyshev-collocation operator in

equation (26) modified to iimlu(te boundary condi-

tions, and X I' is the transpose of tile streamwise cen-

tral finite-difference operator, which for the present

study is fourth-order accurate and leads to a penta-

diagonal matrix. The matrix f)2 may tie decomposed
into

D2 = QAQ-1 (37)

where A is a diagonal matrix of eigenvalues and Q

is the corresponding matrix of eigenvectors of D2. A

new dependent mata'ix is introduced aim defined as

q',, = Q-1G (a8)

Substituting equations (37) and (38) into (36), one
obtains

AqS,, + ,>,,X 7' : 2 _ (39)-,d.(l),, = G,,

where G,_ = Q-I/_;,. Equation (39) is used to solve
for @n, which is then used in equation (38) to solve

for _),_. Since the coefficient matrix in equation (39) is

pentadiagonal for hmrt.h-order streamwise discretiza-
tion, fast back substitutions result. The solution
is then transformed through inversion to physical

space. Tile derivative matrix D, its inverse, and
matrices Q and Q I are mesh-dependent matrices

and need to be calculated only once; the same is
true of the influence matrix, which is (t(,s(:ril)ed in

tile next section. To reduce the computat.ional (:()st,

planes of tile coinputational domain can be sent to
the solver for vectorization. Sending the entire com-

putational t)h)ck may bc done and leads l() a more ef-
ficient solver, but the resulting memory requirements

far outweigh the cost savings.

3.4 Influence-Matrix Method

Equations (30) to (33) are solved on a nonslag-
gere(t grid. An influence-matrix metho(t is emph)ye(l

to solve for the pressure. Sl.r(?ell. and Hussaini

(ref. 41) used the method for tim Taylor-Couelle

problem, and later Danat)asoglu. Biringen, and

St reett (ref. 28) use(l the method for the 2-D chamlel

flow problem. Instea(l of solving a Poisson-Ncumaml
problem, two Poisson-Diric|det problems are solved.

Tile solution of the following Poisson-DirMdet

t)rol)lem, which is the pressure-lik(' equation, is

sought:

X-723)= F in I" (40a)

_:_,,= 0 on OF (40b)

where F is the computational (tomain, OF is the COIll-

putational boundary, and _)_ indicates a derivative

of the pressure-like quantity normal to tile bound-

ary 0F. To accomplish this, a sequence of solutions

to the following probhml is first, determined:

V2g) i =0 in I" (413)

i)i _ bi,.j on 0F (41}))

for each discrete boundary point _j. Tile Dirac delta

function 6i,j is defined as 6ij = 1 for i = j and

[5i,j = 0 for i _ j. Upon comtmtation of the vectors

of normal gradients _)i_ at all the boundary points,
these vectors are then stored in cohnnns to yMd a
matrix that is referred to as the influence matrix, or



/VB 1
INF = [_J_, _2 ..... _n j (42)

where N B is the number of boundary points.

The influence matrix, which is dense, is of order

N B x N B for 2-D problems and of order N B x N B x Nz
for 3-D problems, and it is dependent on the com-

putational mesh only. Since the matrix is depen-

dent on the mesh, it. need be calculated only once

for a given geometry. However, the memory require-
ments for the influence inatrix for a 3-D problem

can quickly become overbearing and, thus, eliminate

the possibility of performing simulations into later

stages of transition. For example, this single ma-

trix may easily require 70 Mbytes of nlemory in the

early stages of transition of a standard 3-D problem
with N: = 16. However. since the Hehnholtz equa-

tion (35) is solved in Fourier space, where the coef-

ficients are independent of each other, this memory

requirement Call be alleviated with a small penalty

of cpu time (fractions of a second). Through se-

quential reading of the planes NB x NB of the ma-
trix front disk. the 70-Mbyte requirement dwindles

to an acceptable 4-Mbyte size that is now indepen-

(h'nt of the spanwise discretization. In particular, for

a ('ray supercomputer, buffer in(out) commands can
be used to road(write) data while the program con-

timms to execute. Thus, lhe overhead cost is virtually

nogligible.

The composed influence matrix gives the residuals

of _ as a result of the unit boundary condition
in_lllent'e, or

[IN v] P = Residual (43)

The value of one honndary condition is temporarily

relaxed so that the problem is not overspecified. This

is done by setting one cohmm of the influence matrix
to zero, except for the boundary point of interest,

which is set to tinily. The corresponding residual in

equathm (433 is exactly zeroed.

The Poisson equation with Neumann bound-

ary conditions is equivalent to the following solu-

tion of a Poisson problem and a Laplace problem
(or Hehnholtz problems) with Dirichlet boundary
c(mdilions. First, solw,

V2p I = F in F (44a)

pl =0 on OF (44b)

Again, compute the gradients normal to the bound-

ary _o/. This gives the influence of the right-hand

side F on the boundary. Then, solve

V2_.) I! =0 in F (45a)
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subject to the boundary constraint

pll = i7;% ' goI on OF (45b)

The final solution that satisfies the original problem
and the boundary conditions is go = foI - goII.

Since the gradient, or boundary condition, at one

discrete boundary point is relaxed in the influence-

matrix formulation, the desired condition (gan = 0)

may not hold at that boundary point. In order to

regain this boundary condition, the pressure prob-

lem (eqs. (44) and (45)) is resolved, but this time a

nonzero constant (say 0.01) is added to the right-
hand side of equations (44). A pressure correc-

tion _ results. The composite solution satisfies the

boundary conditions at all discrete nodes and con-

sists, then, of a linear combination of p and _. This
combination is found by satisfying the following two

equations:

al fen -t- a2p_, = 0 on OF i (46)

and

31+32=1 (47)

The final pressure correction pm+l is then given by

_],,+1 = al_o+ (1 - al)_5 with al = _,_/(_5_ - p_)

(4s)

Upon solution for f0m+l , the full RK time-step veloc-
ities u m+l are found via equation (32). As a note,

the corner points are not included in the discretiza-

lion and are used in the tangential slip-velocity cor-
rection only. The pressure at the corners is of mi-

nor significance and interpolations are sufficient to

compute these pressures.

3.5 Slip-Velocity Corrections

The pressure-like correction equation (33) is an
inviscid calculation and is well posed, provided that

boundary conditions on the wall-normal component

of velocity are enforced. At the end of each full RK

time step, a nonzero tangential velocity component

may arise at the computational boundary. This is
reDrred to as a "slip velocity." This slip velocity

may be made small in magnitude, compared with the

RK step size h_n, by a proper choice of intermediate
boundary conditions. The conditions used herein

were described by Streett and Hussaini (ref. 41),

based on the work of Fortin, Peyret, and Temam

(ref. 42).

The slip velocities on the boundary for equa-

tion (32) are

um+l * _ h_r_ ,-, m+tr = u r vfo r on 0r (49)



wherer indicates a tangential component on tile

* = 0, then'm+l _ O(h_").boundary OF. If u r , u r --
Expanding tile gradient term of equation (49) into

a Taylor series about t = ,,n one obtains

V m+l ,n ,n m. O[(h_")21 (50)PT = VpT + ht (V_¢)t +

Approximate the time derivative

tion (50) by

term of equa-

(Vgo_z) t = Vp_Y - Vp_' 1 + O[(hln) 2] (51)
hm 1

t

and substitute equations (50) and (51) into equa-
hm 3tion (49). The slip velocity is reduced to O[( t ) ],

and the intermediate boundary conditions that result

are given by

u; =uBc+h' t" 1+ /4" l JVg"_ ---V_,_h;,,1 l

+ o[(<"):'1 (52)

where UBC = 0 for a rigid wall and UBC = Uo for an
inflow condition or for a wall slut. condition evaluated

at the appropriate tinle in the IlK stage.

3.6 Buffer-Domain Technique

The buffer-donlain technique for effecting a non-
reflecting outflow boundary treatment was intro-

duced by Streett and Macaraeg (ref. 43). Tile
technique is based on the recognition that, for

incompressible flow, the ellipticity of the Navier-

Stokes equations, and thus their potential for up-
stream feedback, comes from two sources: the vis-

cous terms and the pressure field. Examination of

earlier unsuccessful attempts at spatial sinmlations

indicated that upstream influence occurs through the

interaction of these two nmchanisms: strong local ve-

locity perturbations interact with the condition im-
posed at the outflow boundary to produce a pressure

pulse that is immediately felt. everywhere in the do-

main, especially at the inflow boundary. Therefore

both mechanisms for ellipticity have to be treated.
To deal with the first source of upstream influence,

tile streamwise viscous terms are smoothly reduced

to zero through multiplication by an appropriate at.-

tenuation function in a "buffer region," which is ap-
pended t.o the end of the computational domain of
interest. Tile viscous terms arc unmodified in the do-

main of interest. To reduce the effect of pressure field

ellipticity to acceptable levels, the source term of the
pressure Poisson equation is multiplied by the atten-
uation flmction in the buffer domain. This is akin to

introduction of an artificial compressil)ility in that. re-

gion and locally decouples the pressure solution from

the velocity colnputation in the time-splitting algo-

rithm. Thus, in effect, the boundary-layer equations,

which are parabolic and do not require an outflow

condition, govern the solution at outflow. Finally,
the advection terms are linearized about the imposed
mean- or base-flow solution in order that the effective

advection velocity, which governs tile direction of dis-

turbance propagation, is strictly positive at. outflow

even in the presence of large disturbances.

The attenuation hmction used in this work is

similar to that of references 43 and 28:

{[ (J-N,,,1})= 1 + tanh 4 ] - 2

where NI_ marks the beginning of the troffer do-

nlaq_ and eva- nlarks the outflow boundary loca-
tion. For illustration, tile buffer-domain region is

sketched ill figure 1. As shown sut)sequently for the

current problems, a troffer-domain length of about

three streamwise wavelengths is adequate to pro-

vide a smooth enough attenuation hmction to avoid

upstrealn influence.

Tile original buffer-dolnain implenientation of ref-

erence 43 involved a fully spectral dis(:retization, with

a spectral multidomain being used in the streamwise

direction as opposed to the high-order finite differ-
ences used herein and ill reference 28. Thus, early

testing of the buffer-domain inethod was done ill an

even more sensitive setting. Fhfference 43 shows a
Immber of tests of the method in tile context of chan-

nel flow, albeit they were produced with a code that

had a slight error and produced a small kink in the

wall vortieity distribution at outflow. Corrected, the
fully spectral channel-flow simulation code produced

results that agree with linear stability theory to five

significant digits in disturbance growth rat('.. Addi-
tional unpublished test cases included simulations of

Poiseuille-Benard flow, in which a strongly unstable

wall temperature condition was imposed; the temper-

ature equation was included in the solution scheme

with the Boussinesq approximation. For tiffs flow,
the unstable thermal boundary conditions produced

large recirculation cells, which in some cases had ver-

tical disturtmnee velocities three times larger than

the imposed Poiseuille base-flow centerline velocity.

These recirculation cells were produced by growth of
the instability (seeded by numerical roundoff error

of the computer), a process that is known to pos-

sess a global, rather than convective, instability na-
ture. The lack of upstream influence even in this ex-

treme test was confirmed by colnparison of vortieity
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distributhmsacrossthechannelfor channellengths
that containedt)etween5and10cells.

4 Results

D)r Ill(' present study, tile nmnerical techniques
cmploye(l for the spatial DNS code are systemat-

ically verified through comparison with the well-

cstat)lishcd LST and the more recently devised PSE

theory. First, the present solutions from LST are

compared with previously pul)lished results. Next,
tilt, results from the DNS with a 2-D disturbance

fl)rcing for both parallel and nonparallel mean flows

are compared with tile LST results. Third, DNS re-

suits Dora 2-D disturbance forcing are compared with

lhe PSE predictions. The sensitivity of the inflow

forcing is demonstrated. Finally, a 3-D simulation
is conducted and discussed. The DNS results from

wave-triad forcing are compared with LST results for

small-amt)litude disturbances. Tile authors extend

lheir thanks to Gokhan Danabasoglu of the Depart-

ment of Aerospace Engineering Sciences, University
of (?olorado at Bouhier, for tile use of his channel sim-

ulation code. Thanks also go to Fabio Bertolotti at

the Institute fi)r Computer Applications in Science

and Engine(,ring, Hampton, Virginia, for supplying
his I'SE results.

4.1 Solutions of LST

Although additional document ation of results de-

rived from LST is arguably unnecessary in this era,

for c(mq)leteness and since a comparison of LST re-
sults with Ill(, I)NS results is a part of this study,

a brief independent code verification is performed

fl)r solving the Orr-Sommerfeht Squire l)robleln, as

(h's('ribed ill at)t)endix B.

Results of the Orr-Sommerfeld equation are well

d()cumented ill the literature. IIerein, comparisons

are nm(te with the results of Jordinson (ref. 44),

who used a tinite-differencc approach. For a 2-D
(tist url)anc(' with Rcyn()l(ts number R* of 998 and

frequency _' of 0.1122, .lor(tinson found the stream-
wise wave mtmber (, of 0.3086- i0.0057. If an

a priori at)proximation of the eigenvalue is unknown,

the spectral global method provides an initial esti-
mate of the eigenvalue. With an initial guess (say,

0.3086 - i0.0057), tile local method is used to re-

fine the eigenvalue. Convergence results for the lo-
cal refinement method arc' shown ill table 1. Tile

present results are in good agreement with those of
,lor(linson.

Figure 2 shows the corresponding eigenflmctions

for the at)ore parameters. Good agreelnent occurs

Table 1. Eigenvalues From LST

JR* = 998; _' = 0.1122; y ...... = 75; sp = 10]

Ny (l

32
36

40

44

48

52
56

60

0.3086817 i0.0055527

0.3086085 - i0.0057926
0.3086050 - i0.0056964

0.3085825 - i0.0057164

0.3085946 i0.0057069

0.3084899 - i0.0057088

0.3085920 - i0.0057083
0.3085912 - fl).0057084

in this comparison of eigenvalue and eigenfunction,
which demonstrates that sound results of LST are

available for the DNS verification.

4.2 Comparison of 2-D DNS and LST

In this section, tile accuracy of the numerical
methods used for the DNS calculations is tested

for small-amplitude disturbances through compari-

son with LST results. Initially, a parallel mean flow
is assunled. Although this is a physically unrealistic

flow, it adequately mimics tile LST assumptions and

provides a good initial test case. A Reynolds number
R o of 900 and wave frequency Fr of (w/R*) x 106 = 86

at the inflow are chosen somewhat arbitrarily for the

test case. [n all attempt to determine tile grid resolu-

tion requirenmnts, computations are performed on a

variety of grids from 401j: × 41 to 100lz x 61 (stream-
wise x wall-normal), where tj, refers to the number of

TS streamwise wavelengths included ill the domain

and 40/z denotes 40 grid points per wavelength. If,

for example, lz = 3, then the grid for 40/x consists of
120 points in the streamwise direction. The results

obtained froln each grid are ill agreement.

In the physical domain, the streamwise compu-

tational domain length is varied, depending on the
number of TS wavelengths of information required.

Normal to the wall, tile domain length is fixed and ex-

tended from the wall to an upper truncation distance

where the far-fieht boundary conditions are imposed.

For parallel flow, tile far-field boundary is varied from

y* = 50 to 100 (where y* = y/5;). A concern with
the primitive variable forlnulation lies ill the pres-

sure calculation, which incidentally is avoided with

the veloeity-vorticity approach as a result of not hav-

ing to solve for the pressure quantity. If the far-field
boundary is an insufficient distance from the wall, an

erroneous disturbance arises throughout the compu-
tational domain. This erroneous disturbance arises
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asa resultof enforcingtile far-fieldboundarycondi-
tionstoocloseto thewall. Similarerrorsarisewith
differentnumericalprocedures.Forexample,distur-
bancesin aboundarylayerexponentiallydecaywhen
approachingthe far field. Usinga shootingproce-
dure,onecanintegratetheLST equationsfromtile
wall to the far-fieldboundaryandmatchthe com-
putedsolutionswithasymptoticallyknownsolutions.
If thismatchingisperformedaninsufficient,distance
from the wall, the computationswill not.converge
to thecorrectsolution.Similarly,the presenterror,
whichcanarisefrom the far-fieldboundarycondi-
tionsimposedaninsufficientdistancefromthewall,
leadsto incorrectresults.

Fromthecomputationswithaparallelflow,afar-
fieldboundaryofy* = 50 appears to be the nfinimmn

distance for an acceptable disturbance error. Normal

to the wall, grid stretching is used for the boundary-

layer computations in order to obtain meaningful re-

sults efficiently. Stretching factors s}_ of 6 to 12 arc
chosen to provide a dense distribution of collocation

points near the wall. (A smaller Sp clusters more
points near the wall.) The number of time steps per

TS wave period is varied from 200 to 1000 in order

to arrive at a rational choice of the time-step size

required. Visual agreement of the results is found
for each of the time-step test cases. (This agreement

translates to no more than 0.1-percent error.) Since

the time-splitting procedure is third-order accurate,

larger time-step sizes may be used (compared with

those of a second-order Adam-Bashforth method).
Computations of the present type involve numer-

ous parameters (e.g., three-directional grid, far-field

boundary location, streamwise domain length, and

time-step size). To remove one of these parame-

ters, a small time-step size is chosen. Hereafter, 320
time steps per period are used to inaintain temporal

accuracy through the nonlinear simulations.

As a first example, the streamwise direction con-

sists of approximately 7 TS wavelengths with 40 grid

points per wavelength. Further, these seven TS wave-
lengths are subdivided into a physical domain of

four wavelengths and a buffer domain of three wave-

lengths. For the inflow, a 2-D disturbance described

by equation (8) with amplitude A ° of 0.1 percent isl 0
forced. The solutions of the Orr-Sommerfeld equa-
tion are used for the disturbance profile. The in-

flow forcing is turned on abruptly, and the results of

the simulation after three and eight periods of forc-

ing at the inflow boundary are compared with LST

predictions in figure 3. The computed phase and am-

plitude for the streamwise u and wall-normal v dis-
turbanee velocity components with downstream dis-

tanee are in agreement with the LST results. After

eight periods of forcing, the leading wave has exited
the computational domain without wave reflections.
This is an indication that the buffer-domain tech-

nique is functional. From LST, the spatial growth

rate is c_i = -0.004509. Growth rates from the DNS

are calculated by a simple central-difference approxi-
mation with the local maximum disturbance stream-

wise velocity component Umax; this simple approxi-

mation yields the results and errors shown in table 2

for various grids. Very good agreement is forum be-

tween LST and the present DNS results, compared
with results from tim crude differential method used

to compute (_i.

Table 2. DNS Growth Rates From Simple
Central-Difference Approximations

N_. x N v -(_i Error a, pl'rcellt.

40l.,. x ,11

60/. x 41

80/._:x 41

4()/:,, x 61
60Ix x 61

80/r x 61

0.004438

.0{),l,173

.00449,l

.004440

.004,173

.0(14194

1.57

.8(I

.33

1.53
.8(1

.33

"Error based on eomparison with LST growth rate of
(_i = -0.(104509.

As demonstrated in figure 3, the buffer-domain

technique has permitted waves to exit the outflow

boundary without waste reflection. This is accom-

plished by specifying a buffer domain of three TS

wavelengths. _' determine this length by compar-

ing the computed results using various buffer re-
gions with LST. To demonstrate the effects of using

a buffer domain of insufficient length, the previous

DNS results of figure 3 arc shown with erroneous

results in figure 4. The incorrect results occur for
a buffer-domain length of one TS wavelength. A

number of buffer-domain parameter variations may

be found that are adequate to implement the out-

flow conditions. The length of the troffer donmin,

the number of grid points, and the slope of the at-
tenuation flmction are the important elements that

may be varied. It is likely that having a small slope

and a snmll change in slope of the flmction relative

to the grid spacing is of the most importance; how-

ever, this postulation has not been confirmed by a
parameter study. With the present attenuation func-

tion (eq. (53)), the slope is governed by the buffer-

domain length and becomes smaller with length in-

crease. Hence, the three-wavelength domain provides

an adequate outflow region, while the one-wavelength
domain does not.
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Next, a nonparallel mean flow is used and the

simulations are repeated. To ensure accuracy, 60 or

more points per wavelength art; used hereafter. For

the nonparallel mean flow, computations with four

periods of forcing are conducted. The streanlwise u

and wall-normal v velocity amplitudes of the distur-

bance, as computed by simulation and with LST, are

shown in figure 5. The change in the length scale,

as a result of the growing boundary layer, is evident

and leads to an increase in growth rate and a shift in

wavelengtil. Since R* = 900 and/:7. = 86 correspond
to a growing mode near the lower branch of the neu-

tral curve, increasing growth rates are expected with

downstreanl propagation. This is consistent with the

results in figure 5. Since LST neglects nonparallel

effects, exact quantitative agreement is not expected
here.

In sllnlntary, tile nmnerical techniques used for

spatial DNS were tested by a conlparison with LST.

This comparison was made because LST provides an
adequate tool to verify" the spatial simulation results

for small-amplitude disturbances. Also, since LST is

mfiversally accepted and is a well-established theory,
it. lends credence to the DNS results. A paramet-

ric study was conducted to determine the effects of

grid refinement and domain size and to determine an

adequate time-step size. Furthermore, the outflow
boundary treatment was successfully tested. A con>

t)arison with LST is limited in scope because of the

underlying assmnptions of the theory. Better insight

into the flow physies of transition attd a better un-

derstanding of the DNS numerics could be achieved
if results from DNS were compared with a more

complete theory or experiments.

4.3 Comparison of DNS and PSE Theory

_Recently, a new theory (PSE) has emerged that;

accoullts for boundary-layer growth and nonlinear
disturbance interactions. In this section, the results

front spatial DNS are compared with PSE theory

predictions. First, tim effects of inflow disturbance

variations and grid refinement on the sohttions of the

DNS in the linear and nonlinear regime are discussed.

Second. DNS results are compared with those of PSE
theory. Inferences are drawn by comparing DNS

results to the distorting mean flow results of PSE

theory.

As witit Bertoh)tti (ref. 16), calculations are made

with an inflow Reynolds number R_ of 688.315, a
frequmwy /_. of 86, and a 2-D disturbance forcing

at the inflow with amplitude A]).0 of 0.25 percent

rms. The inflow corresponds to a streamwise location
prior to branch I of the neutral curve, in a region

of disturbance decay. With tiffs inflow amplitude,

the disturbance decays initially until branch I of the

neutral curve is reached, where the wave then begins

to grow. The disturbance amplitude grows through

the region of instability. Farther downstream, after

passing branch II of the neutral curve and entering
the region of stability, the wave saturates, or decays.

The task at hand is to accurately predict the growth

and decay of this evolving wave.

4.3.1 DNS parameter variation. How dis-

turbances are ingested into the boundary layer and

the effects of this ingestion are topics of the study

of "receptivity." (See Reshotko, ref. 45.) For the
present study, the presence of an ingested distur-

bance is assumed, and the evolution of that dis-

turbance with downstream distance is computed;

however, it is of utmost importance to know and

understand how small changes in the disturbance
(amplitude or profile) affect the computcd down-

stream evolution. It is generally accepted that small

differences in disturbance amplitudes at ingestion

into the boundary layer lead to varying locations of
transition. Although these differences in the distur-

bance Inay be small at tile inflow, they nay amplify
downstream.

To demonstrate tile sensitivity of spatial DNS to

inflow disturbance variations, two specific DNS com-

putations are performed with inflows fl'onl LST and
PSE approximations of the Navier-Stokes equations.

Hereafter, these two simulation cases are referred to

as DL and DP, respectively. Since PSE theory is an

integral method, its inflow condition nmst be pre-
scribed by some local approximation, such as was

prescribed and used by Chang, Malik, Erlebacher,

and Hussaini (ref. 46). The DNS computations are

performed on five different grid and inflow variations
and are forced for approximately 28 to 31 TS peri-
ods. These five cases are shown in table 3. These

test cases give a variation in inflow, grid resolution,

attd wall-normal domain length.

T_dfle 3. Direct Numerical Simulation Test Cases

Case _\_ x N_j Far field Yr;,ax

DL-41

DP-41
DL-61

DP-61

DP-81

60/. x 41

60/_, x 41
6(}/:,:x 61

80/x x 61

60/a. x 81

75

75
75

100

75

Figure 6 shows the maximum streamwise am-

plitudes of the Tollmien-Schlichting (fundamental)
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waveUl, the mean-flow distortion u0, and the first

harmonic u2 with downstream distance for LST and

PSE inflows on the grid 60/x x41 (DL-41 and DP-41).

In the regions of small amplitudes (linear), the results

from both inflows are in good agreement. Farther
downstream, the wave amplitudes increase to levels

where nonlinearities are significant. A slight varia-
tion in the results for the two inflows arises; at the

saturation of the fundamental wave, the difference

between the two wave amplitudes is 2.5 percent. The

streamwise u and wall-normal v velocity components
for the LST and PSE inflow profiles are given in fig-

ure 7. The LST profile is almost indistinguishable

from the PSE profile. One might initially overlook

the infinitesimal differences, but these differences are

clearly amplified downstream (fig. 6). This suggests

that the evolution of a disturbance is very sensitive
to small changes in that disturbance. Careful consid-

eration of the disturbance inputs is of utmost impor-

tance when any computed results are compared with

those of theory or experiments; otherwise, improper
conclusions could result.

For the next comparison, the computation grid is

refined to 60lx × 61 (DL-61) and 801x x 61 (DP-61),
with corresponding far-field boundaries of Ymax* = 75
and * :Yrnax 100. The resulting streamwise ampli-

tudes of the fundamental wave Ul, the mean-flow dis-
tortion u0, and the first harmonic u2 are shown with

downstream distance in figure 8. Similar to the pre-

vious results (fig. 6), the amplitudes agree in the lin-

ear regime and a maximum discrepancy appears near

saturation. Altering the far-field distance and refin-

ing the streamwise grid leads to insignificant varia-
tion in visual comparisons of the results. However,

refining the normal grid from 41 to 61 collocation

points leads to larger saturation amplitudes. This

effect indicates that the normal grid may not be ade-
quate. To obtain a grid-resolved solution, a final test

case (DP-81) is computed for 81 collocation points
with a PSE inflow. Results obtained on the vari-

ous grids with a PSE inflow are shown in figure 9.

The results indicate that a grid-resolved, or nearly

grid-resolved, solution has been attained for tile in-
flow disturbance considered. Also, note that a coarse

grid leads to an underprediction of the saturation

amplitudes for the fundamental wave, the mean-flow
distortion, and the first harmonic.

To obtain the results shown in figure 9, a buffer

domain of three TS wavelengths and 320 time steps

per period is used. For the DP-81 case, the compu-

tations are restarted and permitted to continue until
the leading wave front has exited the outflow bound-

ary. This successfully demonstrates that the buffer-

domain technique is functional for the nonlinear

calculations. Finally, the computations are restarted

using 416 time steps per period to determine if the re-

sults are time accurate. Visual comparisons of these

results with those of figure 9 reveal no differences

with the use of different time-step sizes. So 320 time

steps per period are sufficient for the present test

problem.

_. 3.2 Results of DNS and PSE theory. In

this section, the nonlinear spatial simulation results

are compared with PSE calculations of Chang et al.

(ref. 46) and Bertolotti (ref. 16). With the approach

of Chang et al., a parametric study was conducted.

It was determined that 100 points normal to tile wall,
a normal distance of 100_o, and 5 modes of the series

given by equation (C1) lead to sufficiently accurate

rcsults for the present test problem. Any further re-

finement of thc PSE grid or number of series modes

leads to no visible change in the results. The stream-

wise step size was chosen from a comparison with a

method of nmltiple-scales solution for a linear dis-
turbanee evolution. For appropriate step sizes good

visual agreement of thc results was found. Tile re-
sults of Bertolotti were obtained with six modes of

the series from equation (C1). Hereafter, the Chang
et al. and Bertolotti PSE cases are referred to as C-5

and B-6, respectively. Bear in mind that questions
concerning PSE parameterization have not yet been

fully answered. This is illustrated in the compari-

son of the C-5 and B-6 results, shown in figure 10.

The streamwise amplitudes of the flmdamental wave
'ul, the mean-flow distortion u0, and the first har-

monic u2 are shown with downstream distance. Good

agreement of the two PSE results is found for the

fundamental-wave amplitude in both the linear and

nonlinear regimes, except for a small discrepancy in
the saturation amplitude, which may be attrilmted

to small differences in the inflow disturbance (figs. 6

and 8). However, a significant unexplained difference

in the C-5 and B-6 mean-flow distortion quantities

does appear. Similar to the DNS results (fig. 9), the
C-5 results capture early evidence of the first har-

monic between R* = 690 and 900 (barely visible),
while the B-6 results do not. With these differences

in the PSE results noted, the converged DNS results

(DP-81) are compared with the C-5 PSE results be-
low. The PSE results of Bertolotti have been com-

pared with DNS results in less detail than that of the

present paper. (See ref. 15.) Good agreement was

indicated by the Bertolotti comparison. Unlike the

present study, wherein the same disturbance ampli-
tudes and profiles are used, the Bertolotti comparison

involved a matching of the disturbance amplitudes at
some downstream location.
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ThisC-5casewasselecte(landcompared with the

DP-8I results since it is the most controlled compar-
ison: both calculations are fi)reed with the same in-

flow disturhance. In figure 11, maximum streamwise

amplitudes of the fundamental wave, the mean-flow
distortion, and the frst }mrmonic with downstream

distance from DP-81 are compared with the C-5 re-
suits. Results for both the flmdamental wave and the

first harmonic are in good quantitative agreeinent

throughout the linear and nonlinear regions, while

some discrepancy occurs with the mean-flow distor-

tion (tuantity in tile nonlinear region. It may be ad-

vantageous to view this eoml)arison on a logarithmic

scale. (See fig. 12.) A comparison of this type sug-
gests that results for the fundamental wave, the first
harmonic, att(t the mean-flow distortion are in better

agreement than is shown in figure 11. Also, the early
evidenee of the first harmonic between R* = 690 and

900 is visually drawn out. It is apparent that finite-

amplitude diflk_rences are SUpl)ressed while small dif-
ferences in near-zero amplitudes are exaggerated as

a result of the logarithmic scaling.

To further examine the DP-81 and C-5 results,

disturbance profiles at t.wo streamwise locations are

t)resented in figures 13 to 16. Figures 13 and 14 show

streamwise comt)onents at streamwise locations cor-
responding to local Reynohts numbers of R* = 1413

and 1519, respectively. Figures 15 and 16 show wall-

normal eonlponents at the sanle respective stream-

wise locations. As shown in figure 11, the first down-
stream locati(m is midway through the calculation,
where the mean-flow distortion has a sudden rise,
an(l the second is near the fundamental-wave satu-

ration. The picturett mean-flow distortion, flm(ta-
mental wave, and first and second harmonic profiles

predicted by DP-81 and (?-5 are in good qualitativ,_

as well as quantitative agreement, even in regions of

high gradients. As before, the exception lies in the
mean-flow distortion quantity. Tile disturbance pro-

iih,s of the streamwise compommts reveal that the

DNS results agree well with the PSE results in re-

gions of positive influence on the mean flow, while
in regions of negative influence PSE theory predicts

stronger distortions than does DNS. From figures 15

and 16, it is apt)arent that the wall-normal compo-

nent of the mean-flow distortion computed by DP-81

is in agreement with the C-5 results near tile wall,
with tile discrepancy increasing with distance from

the wall. Most likely this discret)aney in the results

is due to homogeneous Nemnalm conditions imposed

in the far-field wall-normal component of the mean-

flow distortion for PSE theory. Unlike the DNS ap-
proach, this approach leads to a nonzero wall-normal

,nea,>flow eo,nponent in the far field. As a result,
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the mean flow varies from the Blasius (mean) flow.

This variation is shown in figure 17 by a compari-
son of results from tile far-field Blasius solution with

those from the PSE solution. The maxinmm differ-

ence in the mean flows occurs near the location of
wave saturation.

As a final test, a simulation was repeated to deter-

mine the effects of Nemnann far-field boundary con-

ditions for the wall-normal component. For compu-

tational efficiency, the DP-61 ease was used since the

results appear sufficiently converged with 61 colloca-

tion points. (See fig. 9.) The results are shown in fig-

ure 18 along with the previous DP-61 and C-5 results.
Changing tile far-field boundary conditions results in

no apparent variation in the fundamental-wave and

the first harmonic results; however, the Neumann

boundary condition affects the mean-flow distortion

quantity slightly. Larger amt)litudes of the mean-flow
distortion result. Tile streamwise an(t wall-normal

disturbance components for the DP-61 case with the

Neumann far-field condition are given with the C-5

results in figures 19 to 22. These results correspond
to R* = 1413 and 1519. A careflfl comparison of

the present profiles with the previous results (figs. 13

to 16), which have hoinogeneous Dirichlet far-fieht

boundary conditions, reveals timt better agreement
between results from DNS and from PSE theory is

found. M()st significantly, the streamwise mean-flow

distortion profiles with the Nemnann boundary con-

dition are in better agreement. Only slightly better
agreement is achieved for the wall-normal mean-flow

distortion profiles. It at)t)ears the PSE theory with

the Neumann boun(iary condition has a strong ef-
fect on the mean-flow distortion and only a mild to

negligible effect on the fun(lamental wave and the
harmonics.

It is important to understand the differences in
the DNS and PSE theory numerical methods to prop-

erly draw conclusions from the above comparisons.

For tile PSE theory approach, the disturbance is rep-

resented by a Fourier series, as described in appen-
dix C. The equations are solved in coefficient space,

where the dependent variables are tile Fourier coeffi-

cients. Boundary conditions are imposed on each co-

efficient in(tependently. For the zero-or(ter coefficient

(mean-flow distortion), the boundary-layer equations
result; thus, the natural far-field boundary condition

is a homogeneous Neumann condition on the wall-

normal velocity component. For the fundanmntal

wave and tile harmonics, tile homogeneous Dirichlet

boundary conditions are the natural physical choice
in the far field. For the DNS approach, the flfil-

disturbance equations are solved and t)ounttary con-

ditions are imposed on the disturbance. A physically



realizableassumptionis that thedisturbancesvanish
in the far field,or freestream;tiros,homogeneous
Dirichletboundaryconditionsonthedisturbanceare
a "good"choice.Whenthe DNSresultsarecom-
paredwith tilePSEtheory,results,differencesshould
appearasa resultof the differentboundarycondi-
tionsused.It is apparentthat thesedifferencesare
smalland becomemostapparentin the mean-flow
distortionquantities. SomeDNSresultswereob-
tainedwith theNeumannboundaryconditionsused
in thefar fieldandaregivenwithPSEtheoryresults
in figures18to 22. Againdifferencesin theresults
arefound.Evidently,significantdifferencesremainin
tile boundaryconditiontreatmenteventhoughboth
approachesuseNeumannconditions.For theDNS
case,aNeumanndist.urbanceboundaryconditionis
enforced,whilefor PSEtheory,a Neumannmean-
flowdistortioncomponentisenforced.Thisvariation
suggeststhat the flow may exit the far-field bound-
ary in the DNS approach with nonzero velocities in

the fnndamental wave and the harmonics, while this

cannot happen when tile PSE theory is used. Ba-

sically, this difference suggests that the DNS results

will not be identical to the PSE theory results.

Another possible explanation for the small dis-

crepancy in tile comparison of DNS with PSE the-

ory is that as the disturbance grows and reaches fi-

nite amplitudes, an induced pressure gradient arises,

which can be calculated by DNS. The PSE theory ap-

proach assumes negligible streamwise gradients, and
the boundary-layer equations result for the mean-

flow component; thus, PSE theory cannot account

for tile existence of the induced streamwise pres-

sure gradient. This explanation to the discrepancy is

under consideration and may be explored further.

4.4 Comparison of 3-D DNS and LST

To demonstrate the extension to allow for 3-D dis-

turbances with a Fourier series (eqs. (27) and (29))

used in the spanwise direction, a final comparison

is made between 3-D spatial DNS results and LST
results for the parallel boundary layer. As in sec-

tion 4.2 an inflow Reynolds number R_ of 900 and a
wave frequency Fr of 86 are used. Computations are

performed on a mesh 601a: x 41 x 5 (strcamwise x wall-

normal x spanwise) involving cosine-sine transforms.
In tile streamwise direction, the computational do-

main is six TS wavelengths ]ong (three physical and

three buffer), and each time period is divided into 320
time steps. At the inflow, a 2-D fundamental wave

with amplitude A°I,0 of 0.01 percent and a pair of

oblique waves each with atnplitude A°I,+I of 0.01 per-

cent and spanwise wavelength )_z of 20r_ are intro-
duced. The results at spanwise locations of z = 0 and

z = )_z/4 after four TS periods of was;e-triad forcing

are given with LST results in figures 23 and 24. Good

agreement is found for the small amplitudes consid-
ered. As a result of the good agreement between the

DNS results amt the LST results, one can conclude

that tile disturbance amplitudes are sufficiently small

that nonlinear interactions are negligible.

5 Conclusions and Future Directions

In the present paper, a spatial direct numerical

simulation (DNS) approach has been introduced for

two- and t.hree-dinmnsional (2-D and 3-D) boundm'y-

layer transition problems. The numerical techniques

have been tested by comparison of DNS results with

results from the linear stability theory (LST) and
from the newly developed parabolized stability equa-

tion (PSE) theory. Results of the present study are
as follows:

1. Resulting wave atnplitudes and phase from

the DNS are in very good agreement with those

from LST for 2-D and 3-D small-amplitude
disturbances.

2. The influence and effect of small differences at

the inflow have been demonstrated using LST

and PSE theory profles at the inflow. Even very

small differences in amplitude or profile b_come

amplified downstream.

3. In the comparison of DNS results with those
of PSE theory, good overall quantitative agree-

ment is found in the amplitudes and profiles.

Questions of boundary condition treatment have

arisen. A difference in the far-fieht boundary con-

dition treatment for the PSE theory is identi-
fied and likely leads to the differing mean-flow

distortion quantities. For transition prediction,

where integral quantities arc of importance, the

PSE theory is likely to be a _asefial tool for the
engineer.

Sinmlation studies of transition on swept wings,

large-amplitude wave-wave interactions, 3-D suction

and blowing for generating streamwise w)rt.ices, and
subharmonic forced transition are all underway. Fur-

ther detailed comparisons of PSE theory with spatial

DNS for 3-D transitioning flows are also in progress.

All these ongoing studies are directed toward quanti-

fying transitional flows, which previously could only
be solved for qualitative information.

NASA Langley I/esearch Center
Hampton, VA 23665-5225
June 2, 1992
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Appendix A

Mean-Flow Equations

Fora laminarboundarylayer,anorderof mag-
nitudeanalysisyieldstile importanceof eachterm
in theNavier-Stokesequations.Prandtl(ref.47)ob-
tainedthe first estimateby neglectingtermsof or-
der 1/R2,and higher. This ledto the now-famous
boundary-layerequations.Fora2-D,incompressible
th)w,theseare

OU OV

0a_- + _y (A1)
=0

uOU vOU_ OP 1 02U 0 (A2)
+ Oy Ox + R_.Oy 2 -

subject to boundary conditions

U(x,0) = V(x,0) = 0 and U(x, oc) = Uvc(X) = 0

(i3)

The first significant observation by Prandtl was

that the normal pressure gradient is negligible and
the pressure is a known function of x, which is

assumed to t)e impressed on the boundary layer
t)y the inviseid outer flow. The second item of

importance is that second derivatives in x have been

lost in the boundary-laver approximation, the result

t)eing parabolic equations in x. The equations may

readily be solved coInputationally through use of a

marching algorithm with x as the marching variable.

One of the most fainous and widely used solutions

to the boundary-layer equations (A1) to (A3) is

tile fiat-plate similarity solution obtained by one of

Prandtl's students, Blasius (ref. 48). For a parallel
free-stream flow over a flat plate, the free-stream
velocity U_c is constant. A stream flmction is defined

in terms of a similarity parameter _ by

_., = (uU:,cx)l/2 f(_l) (A4)

where _ = greI/2 Correst)onding velocities are
,F _ • .F •

defined by

0_, 0¢
U = and V - (A5)

Oy 0x

By substituting the velocities into the boundary-layer

equations, one arrives at the following equation for
the similarity profile:

f'"(_]) + _f(_/)f"(_) = 0 (A6)

with boundary conditions from equations (A3), or

f(0) = f'(0) = 0 and f"(_-_ oc) --, 1 (A7)

where a prime indicates d/d_1. After equations (A6)
and (A7) are solved, the resulting mean veloc-

ity profile components for the boundary layer are

determined froln equations (A5) and are given by

1/2-1/2
U--f'(_) and V= _ _: [_/_(_)-f] (A8)

Moreover, the displacement thickness 5* may be
computed and is given by

9_0Y_CC (1 x 9_0_c5" = - U) dy - £i-/2 (1 - f') d_)
�ix

32 X

-- ~
R1/{ lira (_ f) = 1.7207678_/2 (A9a)

x y_oc /i x

or

-- = 1.7207678Rx U2 (A9b)
Z

A Reynolds number based on this local length scale
may be defined as R* = UocS*/v. With equa-

tions (A9), the mean flow (eqs. (A8)) can be con-
sistently determined on the DNS mesh so that DNS
result differences duc to mean-flow variations are

prevented.

Although the parabolic boundary-layer equa-

tions (A1) and (A2), which describe the mean flow,
can be solved computationally by a marching al-
gorithm, it is more convenient to use the similar-

ity formulation equation (A4) and numerically solve

the ordinary differential equation (A6). For the

present problem, a fifth-order, fixed-step Runge-

Kutta method described by Luther (ref. 49) is em-
ployed. The solutions are then retained on the

computational mesh.
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Appendix B

Linear Stability Theory
Governing Equations
The well-celebratedOrr-Sommerfeld(refs. 1

and2) andSquire(ref.50)equationshaveledto a
betterunderstandingof the linearregionof transi-
tion. Theseequationsarederivedfroma lincariza-
tion of theNavier-Stokesequations(1) and(2). In
termsof the nornlalvelocity,the Orr-Sommerfeld
equationisgivenby

v2 - Uox & v2v 2 0x - ° (B1)

with boundary conditions

(B2)

For 3-D disturbances, the equation for normal vortie-
ity f_, referred to ms the Squire equation, is required

in addition to the Orr-Sommerfeld equation. The

Squire equation is

1 2 0 0 ) dU Ov_V - U _ - 0 (B3)Ox Ot d_ Oz

with boundary conditions

Q=0 at _)=0 and _---,0 as _--_oc

(B4)

Numerical Methods

For the present study, solutions of the LST equa-
tions (B1) to (B4) are required for an inflow condi-

tion. A global method is outlined to deternfine the
discrete spectrum of interest, and a local inethod is

presented that may be used to track eigenvalues and

corresponding eigenvectors efficiently.

Both 2-D and 3-D disturbances are assumed to be

travelling waves. A normal-mode form of sohltion is

assumed and is given by

{v, fi} = {+, _}(_)e i(_x+/_-'°t) + Complex conjugate

(BS)

where {_,, _} are the complex eigenveetors, w is the

real frequency, fl is the spanwise wave number, and

c_ -- O_r+i_ i is the complex streamwise wave number.
In stability theory, c_i gives a measure of the distur-

bance growth, or decay. The strealnwise wavelength

is defined by Az = 27r/O_r. For 3-D instabilities, the

spanwise wavelength is defined by Az = 2rr/;q.

Substituting the normal-mode form equation (B5)

into equations (B1) to (B4) yields

i/"' + a(_)i ,'t + b())i, = 0 (B6)

where

fi" + dO)fi + = 0 (B7)

= 2 + 92) - -

b(,_) = ((_2 +/32)2 + iR(c_2 + ,/32)[ctUo(_ ) _ w]

+

=

with boundary conditions

f,, _,',fi = O at _ = o and i,, ¢,',_ _ 0 _s _ --, vc

where a prime in(licates d/d_ and R = ._z .

By introducing a temporary dependent vari-
able _ = d, the derivative boundary conditions

are removed. Substituting tile derivative matrices
(eqs. (26)), the Chebyshev series, and tile temporary

variable into equations (B6) to (BS) leads to

(j-Di,jvj =0 with _N =0 (B9)

and

(D_j+Di,jaj)_j+bjvj = 0 with u0 --u?¢ = _0 -- 0

(BIO)

(Di2.j +c.))f'tj +djt_j =0 with _0 = Q?¢ =0

(Bll)
where

aj = -[2(c_ 2 +/_2) + iR(r_U3 - w)}I

b3 = [(a2 +/_2)2 + JARLS'+ iR(e_ 2 + _2)((_Uj - w)]I

_:_= -[2(,_ _ +/_") + iR(_u_ - _,)]I

• [I
dj = -(t3Rbj)I

and I is the identity matrix.

The spatial stability of the boundary layer is of

interest. The Reynolds number R, frequency w, and
spanwise wave number _3 are specified, and the com-

plex streamwise wave number a is the eigenvalue.
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Eliminatingthe dependentvariable_ andcombin-
ing equations (B9) to (Bll) results in the following

nmtrix eigenvahu, problenl:

B(,,I{,',,. _, }r = 0 (m2a)

where v,, and f_. are the coefficients of the series, or

discrete flmetional values of the normal velocity and

w_rticity at the Gauss-Lobatto points, and

B((t) = C.l{t 4 + C3(_3 + C2(t 2 + ClO_ + C O

(Bl2b)

The matrix coefficientsC iare complex square matri-
ces of order N fur 2-D instabilities and of order 2N

for 3-D instabilities. Matrices C,l, C3, C2, and C1 are

singular. The eigenvalue problem is nonlinear and of

order four in the eigenvalue a. Various methods are

available to solve such problems. Four approaches
are given in some detail by Joslin (ref. 51). Herein,

a global and a local method are used to generate an

inflow disturbance forcing tor the simulations and are
described next.

Global blethod

A global method gives the discrete spectrum of

eigenvalues without a priori knowledge of the value.
A method referred to as the linear companion ma-

trix method was given by Gohberg, Lancaster, and

Rodman (ref. 52). The method has been applied to
the 2-D Orr-SommerDld problem with a flat-plate

boundary layer by Bridges and Morris (ref. 53),

anlollg oth(,rs.

The linear companion nmtrix method is a lin-
earization of the nonlinear problem. An algebraic

eigenvalue transfl)rnmtion A = 1/(a- s), where

s - w/0.35, is somewhat arbitrarily used to remove

the singularities in the coefficient nmtrices. The

linearization yiehts

[ -- (_ ; 1 (_J3 C { ' (_'2 C4101 {_7 lc{c) o 0 xi = 0

(l I 0 00 0 I 0

(B13)

where I is the identity matrix of order 2N and

is the identity matrix of order 8N. The matrices

el tO 1_4 are nonsingular as a result, of the applied

eigenvalue shift. The eigenvalues and corresponding

eigenvectors are found from equation (B13) by using

the QR algorithm.

Local Method

The second solver is a more efficient local eigen-
value refiner referred to as the Lancaster refinement

method (ref. 54). The method requires a sufficiently

accurate initial estimate of the eigenvalue, which can
be obtained from the above global method. The

iterative formula is given by

ai+l = ai _ 2f(ai)/[f2(ai) _ f(1)(,g)l (B14a)

where

f(ai) = Tr[B-l(ai)B(l)(ai)] (B14b)

f(1)(_i) = Tr{B-l(ai)B(2)(ci)

-[B-l(cg)B(1)(c_i)] 2} (B14c)

and Tr is the matrix trace, B -1 is the inverse of B

(from eqs. (B12)), and B(J) denotes the jth derivative

of B with respect to a. Upon convergence on the
eigenvalue, the eigenvector may efficiently be found

by the inverse iteration formula

B(a){vk+l,f_k+l} T = a{vk, f2k} T (B15)

where a is a normalizing factor. The procedure con-

verges in two or three iterations for an initial guess of
{v 0,fl0}T = [1, 1,..., 1]r. Equation (B13) or (B15),

with the continuity equation and the definition of

normal vorticity, leads to the eigenfunctions {h, _, @}
required for the inflow condition (eqs. (7) and (8)).
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Appendix C

PSE Theory
Forthepresentpaper,it is importantto testand

to verifytheaccuracyofthenumericaltechniquesfor
the spatialDNSprocedureand to make a detailed

comparison with results of PSE theory. For this
reason, brief highlights of some of the important

theoretical and computational aspects of tile PSE

theory are given below.

As discussed in section 2, tile evolution of dis-

turbances is governed by the unsteady partial differ-

ential equations (4) to (6). Instead of solving these
equations directly as in the DNS approach, the PSE

theory seeks approximate solutions of the parabo-

lized version of equations (4) to (6). The approxima-

tion needed to parabolize the governing equations,

as first suggested by Herbert (ref. 15) and Bertolotti

(ref. 16), includes the following two assumptions:

(1) the dependence of the convected disturbance on

downstream events is negligible and (2) no rapid
streamwise variation (i.e., cO2/Ox 2 << 1) occurs in

the wavelength, the growth rate, the mean velocity

profile, and all disturbance profiles.

For nonlinear disturbances present in tile flow

field, periodicity in both the time domain and

the spanwise domain is assumed and the total

disturbance in the following Fourier series expansion
is

N: Nt

u(x,>z,t)= Z Z
rrz-- -- Nz n = - N t

(C1)

where Nz and N_ are total numbers of modes kept in

the truncated series and aJ and _ are the correspond-

ing frequency and spanwise wave number. Equa-
tions (C1) are for velocity components; a similar ex-

pansion can be written for the pressure p. Through

substitution of equations (C1) into the governing

equations (4) to (6), a set of elliptic equations for the

transformed variable fim,n [Om,rz is obtained. Because
of the wave nature of these transformed variables,

they are decomposed into a fast-oscillatory wave part

and a slow-varying shape function part as

(C2)

The governing equations now reduce to a set of
partial differential equations for shape functions

{firr_,7_,/Sm,7t}. In equation (C2), the fast-scale vari-
ation along the streamwise direction x is now rep-

resented by the streamwise wave numt)er c_m,n, and

therefore the second-order variation of shape flmction

in x is negligible (based on assumption 2 above). This

observation leads to the parabolized stability equa-

tions for the shape functions, which are ot)tained by

neglecting all second derivatives in the streamwise
direction and the terms associated with upstream in-

fluence. In other words, through proper choice of

(_mm, the evolution of disturbances can then be de-
scribed by the parabolized equations for the shat)e
functions.

Based on decomposition equations (C1) and (C2),

the linear PSE can be derived for any disturbance

with given frequency and spanwise wave nmnber. For

nonlinear problems, the following nonlinear t.erms
nmst be added t.o the governing equations:

F(x,y,z,t) = (u. V)u (c3)

Since in tile PSE approach the governing equations

are solved in the wave inmlber space, equation (C3)

is expanded to a truncated Fourier series in the wave

number space. The Fourier coefficients then provide

a nonlinear forcing to each of tile linearized shape
flmction equations. These inhomogeneous equations

for the shape flmctions are solved by a nmrching pro-

cedure along tile streamwise direction for all Fourier
nlodes.

Numerically, a second-order backward differenc-
ing is employed to integrate the equations in the

streamwise direction. High-order finite-difference

schemes (fourth-order) are employed to discretize the

normal derivatives. The form of boundary condi-

t.ions required for the PSE approach is of particu-
lar interest. Similar to the DNS approach, no-slip

conditions are applied at the wall. The flmdamental
wave and harmonics vanish in the far field. To ac-

count for the change of displacement thickness in the

perturbed t)oundary-layer flow, the far-field normal

velocity gradients vanisti for the mean-flow distortion

equations.

Chang ct al. (ref. 46) have extended the PSE
numerical approach to the study of compressible

boundary layers. With the PSE approach of Chang

et al. for M_c = 0 and the incompressible results of

Bertolotti (ref. 16), the present comparison with the
DNS results is made.
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Appendix D

Finite Difference Relations
Tile fourth-orderfinite-differencederivativesat

theboundary(0,_'_r)andnear-boundary(1,Nx - 1)
nodes are listed below. The first derivatives are

f0 = <(-25fo + 48fl - 36f2 + 16f3 3f4)

t 1

fL = _(-afo - lOfl + asf2 - 6f3 + f4)

1

12h_.

- 16fN a + 3fx--t)

+ 6f,N-a - fN-4) (D1)

The second derivatives are

1

f(5' - 12h2 (35fo- 104fl + 114f2 - 56f3 + llf3)

1
f_' = (llf0 - 20fl + 64f2 + 4fa - .f_)

1
f_ = (35fx - 104k__l + 114fN_2

- 56fN-a + llfN-4)

1

f.'_-i = _(llfN - 20fN-1 nt- 64fN-2

+ 4fx-3 -- fN-4) (D2)
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Figure 13. Streamwise disturbance profiles of mean-flow distortion u0, fundamental wave Ul, and first, and
second harmonics u2 and ua with normal distance from wall as predicted by cases DP-81 and C-5 for
R* = 1413.
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Figure 14. Streamwise disturbance profiles of mean-flow distortion u0, fundamental wave ul, and first and
second harmonics u2 and u3 with normal distance from wall as predicted by cases DP-81 and C-5 for
R* -- 1519.
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Figure 15. Wall-normal disturbance profiles of mean-flow distortion v0, fundamental wave vl, and first and
second harmonics v2 and v3 with normal distance from wall as predicted by cases DP-81 and C-5 for
R* = 1413.
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Figure 16. WMl-normal disturbance profiles of mean-flow distortion v0, fundamental wave Vl, and first and
second harmonics v2 and v3 with normal distance from wall as predicted by cases DP-81 and C-5 for
R* = 1519.

38



x 10 -2
.25 ' I

V

.20

.15

.10 -

.05
.4

Blasius
• PSE

•

, I
1.2 2.0 x103

R*
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Figure 19. Streamwise disturbance profiles of mean-flow distortion u0, fundamental wave u], and first and
second harmonics u2 and u3 with normal distance from wall as predicted by cases DP-61 (Dvoc = 0) and
C-5 for R* = 1413.
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Figure 22. Wall-normal disturbance profiles of mean-flow distortion v0, fundamental wave Vl, and first and
second harmonics v2 and v3 with normal distance from wall as predicted by cases DP-61 (Dvoc = 0) and
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